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Abstract 
For integer exponents n (n = -1, 0, 1, 2 and 3) in the viscosity law n = β Σ n w i t h 

Σ - surface density of the accretion disc, we have investigated the polynomial approach to 
the solutions of the dynamical equation in the accretion disc model of Lyubarskij et al. [12]. 
Power series expansions of the eccentricity e(u), its derivatives ė(u) and ë(u), their powers 
e

2

(u), e
3

(u),...; ė2

(u), ė3

, etc. are truncated at appropriate values of the exponents and then 
substituted in the dynamical equation. Making additional truncations in the intermediate 
products and results, we have nevertheless achieved accuracy of the solution better than ~ 
10% for large enough domains in the plane (e, ė). These results are established graphically 
by comparing the polynomial approximation of the eccentricity epolynamjal (where u ≡ l n p ; p 
is the focal parameter of the ellipse) and the exact values eexact(u) derived by means of numerical 
solving of the equation. The solutions of the second order ordinary differential equation of 
motion are parameterized by means of the boundary conditions eg = e(u = 0) and ė0 = ė(u 
= 0). The coefficients in the power series expansions are evaluated in explicit form, but 
because of their complexity we give only their ""s""""izes" ", considered as lengths of the files 
which represent them. Problems referred to the possible singularities of the results are also 
discussed. 
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Introduction 
Both analytical and numerical studies during the last two decades reveal 

many of the observational characteristics of the accretion discs around compact 
objects with high masses (black holes in the active galactic nuclei) and stellar 
masses (white dwarfs, neutron stars and black holes in binary stellar 
systems).The comparison between the theoretical models and the observations 
provides to extract information not only about the physical properties of these 
objects but also about the structure and physical conditions in the accretion 
discs themselves. In particular, it is evident that approximately half of the 
young stellar objects, recognized as binaries, are associated with geometrically 
thin and optically thick circular accretion discs. For such cases the geometry 
and physics of the accretion flows are considerably complicated in comparison 
with the identical phenomena around single compact bodies. Similar situations 
may arise when a planet system forms inside the disc and the protoplanets 
locally deplete the material along their orbits. The recent observational evidence 
about the existing of extrasolar planet systems have given rise to another aspect 
concerning the radial structure of the accretion discs. As a rule, the suspected 
extrasolar planets have orbits with high eccentricities. Although the eccentricity 
values and also the radii of the protoplanet orbits may change for different 
stages of the planet-forming evolution process [1], it is suggested that the 
elongated eccentric orbits arise because of the eccentric shapes of the progenitor 
accretion discs. For example, Marcy et al. [2] have investigated two G-type 
main-sequence stars HD 210 277 and HD 168 443, and have concluded the 
existence of companions orbiting around these stars and having masses 
comparable with the mass of Jupiter. Their orbits are with large eccentricities: 
e = 0.45 and e = 0.54, respectively. Such eccentric orbits may result from 
gravitational perturbations imposed by other orbiting planets or stars, by passing 
stars in a dense star cluster, or by the eccentric protoplanetary disc. While HD 
168 443 exhibits a long-term velocity trend, consistent with an undetected yet 
(directly) close stellar companion, HD 210 277 appears to be a single star. 
Consequently, the later possibility is most likely the explanation for its large 
eccentricity. This picture also takes a support from the widespread explanation 
of the superhump events in the light-curves of SU UMa type stars, that explores 
the eccentric structure of the discs. It is natural that under such circumstances 
the interest to the theory of accretion discs with non-circular orbits of their 

8 



particles has increased during the recent years, because the explanation of the 
properties of such objects is a necessary condition for understanding the 
superhump events as a whole. The complexity of this problem may be illustrated 
by the comparison between the cataclysmic variables and low-mass X-ray 
binaries. As pointed out by Haswell et al. [3], in cataclysmic variables 
superhumps are believed to result from the presence of 3:1 orbital resonance 
in the accretion disc. Then the accretion disc becomes non-axisymmetric and 
precesses. The variations of luminosity in cataclysmic variables are caused by 
a tidally-driven modulation of the viscous dissipation into the disc, depending 
on the beat between the orbital and disc precession period. By contrast, in 
low-mass X-ray binaries the tidal dissipation in the outer parts of the accretion 
disc is unimportant because the optical emission is dominated by reprocessing 
of the X-rays emitted from the compact object. Consequently, in these two 
cases the superhump modulation is caused by two distinct mechanisms. 
Similarly, detailed hydrodynamic simulations of the superoutburst events in 
dwarf novae, including the full tidal potential of the binary system, are 
performed in the work of Truss et al. [4]. Their theoretical (using numerical 
methods) investigations of the mass flux through the disc, the growth rate of 
the superhumps and the disc eccentricity show that the superoutburst-
superhump phenomenon is a direct result of tidal instability. Other studies of 
such events demonstrate that the stabilization of the superhump period at low 
values favours model, in which period changes arise strictly from eccentricity 
changes rather than mean radius changes in the disc [5]. This explains why 
decreasing period and decreasing amplitude are strongly linked in the 
superhumps of dwarf-nova. 

Other observational studies of the dwarf nova WZ Sagittae [6] whose 
eclipses permit measuring the location and brightness of the mass-transfer hot 
spot imply that the disc must be very eccentric and nearly as large as the white 
dwarf's Roche lobe. Because the hot-spot luminosity exceeds its quiescent 
value by a factor of up to 60, this indicates that the enhanced mass transfer 
from the secondary plays a major role in the eruption, determining the 
geometrical shape of the accretion disc as well. 

Accretion discs are expected to occur in a large number of various 
selestial objects, for example around protostars, accreting compact objects on 
stellar binary systems and also around supermassive black holes at the cores 
of galaxies. The importance of these phenomena for astrophysics 
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lies in the circumstance that they are related with local hydro-dynamical or 
magnetohydrodynamical processes which can allow outward transport of the 
angular momentum of the infalling matter. So, a considerable part of the 
surrounding matter is able to reach the surface of the compact object, increasing 
its mass and changing its spin velocity. The significance of the above properties 
naturally explains why a large number of theoretical (both analytical and 
numerical) models of accreting discs have been developed during the last two 
decades and have been compared with the available observational astronomical 
data. A lot of theoretical works have revealed many of the subtle properties of 
the accretion discs in order to accommodate the models to these data. In 
particular, Ogilvie [7] stresses that an important and widely neglected aspect 
of the interaction between an accretion disc and a massive companion with a 
coplanar orbit is the vertical component of the tidal force. The response of the 
disc to the vertical forcing is resonant at certain radii, at which a localized 
torque is exerted and at these radii a compressive wave may be emitted. The 
m = 2 inner vertical resonance in a binary star is typically located within the 
tidal truncation radius of a circumstellar disc. This resonance contributes to 
angular momentum transport and produces a potentially observable non-

axisymmetric structure. Larwood and Kalas [8] numerically investigate a close 
stellar fly-by encounter of a symmetrical circumstellar planetesimal disc and 
derive that this mechanism can give rise to the many kinds of asymmetries 
and substructures attributed to the edge-on dusty discs of β Pictoris. Their 
conclusions are supported by the optical coronographic observations of the 
outer perts of the disc of β Pictoris whose asymmetry was found to be 
approximately 25 %. 

Eclipses in the binary stellar systems are often used techniques for 
obtaining numerical estimates of the perameters of these objects, including 
the characteristics of accretion discs when they are present in such binaries. 
For example, the use of the hot-spot eclipse times of the deeply eclipsing 
dwarf nova IY UMa enables to trace out the shape of its disc during the late 
superhump era. The result is an eccentric disc [9]. The analysis of the high-

speed photometry of the dwarf nova EX Draconis through its outburst cycle 
reveals that the disc expands during the rise phase until it fills the most of the 
primary Roche lobe and one-armed spiral structure present in the disc at the 
stages of the outburst [10]. 

The above mentioned papers are only a small part of the numerous 
theoretical and observational evidence illustrating that the accretion disc may 

10 



have not only eccentric shape, but also a complicated internal structure like 
gaps and spiral density waves. This situation makes reasonable the studying 
of discs composed by particles moving on elliptical orbits around a compact 
gravity center. In the present work we continue an earlier investigation [11] of 
an accretion disc model developed by Lyubarskij et al. [12]. Their analysis of 
the accretion flow appears to some extent as a generalization of the standard 
a-disc accretion [13] to the case of non-circular (i.e., elliptical) orbits. Here, 
our goal is to obtain analytical solutions to the dynamical equation describing 
the accretion flow according to the model of Lyubarskij et al. [12] and to 
derive the domain where our results are valid. For the latter reason it is worthy 
to note also some of the limitations of the a-disc model of Shakura and Sunyaev 
[13]. The standard model of disc accretion assumes that the gravitational energy 
is locally efficiently radiated from both sides of the outer disc surface and the 
gas keeps its (nearly) Keplerian rotation because the interactions between the 
neighbouring radial annuli are neglected. However, there may exist an important 
process which leads to a structure different from that picture - namely, the 
advection. Physically, the advection process means that the generated energy 
via viscous dissipation is restored as entropy of the accreting gas rather than 
being radiated. As stressed in [14], the advection effect may be very important 
both for the cases of low and high rates, since radiation decreases efficiently 
under these circumstances. The angular velocity of the gas is much lower than 
the Keplerian, i.e. the sub-Keplerian velocity is one of the general properties 
of the advection-dominated flows. In the model of an optically-thick disc 
considered in [14], the emission of blackbody radiation from the disc surface 
is so inefficient that the advection cooling dominates over surface cooling 
because of the high accretion rate that leads to photon trapping in the disc. 
While in the standard model of Shakura and Sunyaev [13] in the radiation-

pressure dominated region thermal instability exists, in the advection-

dominated case the accretion flow is thermally stable in the same range. The 
reason why the advection cooling stabilizes the radiation-pressure dominated 
region of the disc is that it plays two important roles: balancing and lowering 
the generated energy. 

Another important property of the standard α-disc model is that 
turbulent stresses leading to outward angular momentum transport in accretion 
discs are treated as resulting from isotropic effective viscosity, related to the 
pressure through the α-parametrization of Shakura and Sunyaev [13]. This 
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simple approach may be adequate for the simplest aspects of accretion disc 
theory and was historically necessitated by an incomplete understanding of 
the origin of turbulence [15]. Recently Balbus and Hawley [16­19] have shown 
that the magnetorotational instability provides a mechanism of generating 
turbulent Reynolds and Maxwell stresses in sufficiently ionazed discs for which 
the a­viscosity model is not able to provide satisfactory description of many 
aspects of this process. The new generation of models taking into account 
these properties of the accretion flows should be particularly useful in 
understanding the dynamics of warped, eccentric and tidally distorted discs 
and also non­Keplerian flows (which are expected, for example, close to black 
holes). 

In the above mentioned notes we have touched some of the unresolved 
problems of the standard a­disc accretion model. These deficiencies must be 
kept in mind when the results obtained in the next sections of the present 
paper are considered. Our solutions to the particular cases of the dynamical 
equation, governing the eccentric accretion flow, are in fact, solutions of a 
problem treating the accretion picture on the base of the Shakura­Sunyaev 
model for circular discs [13], extended to the case of eccentric orbits by 
Lyubarskij et al. [12]. All the restrictions concerning the applicability of such 
theories in reality (tested by means of observations) will be valid for our 
solutions even when they are mathematically exact in the considered domain 
of parameter space). 

Numerical Solutions to the Dynamical Equation of the 
Accretion Flow 
In a previous paper [11] we have obtained the explicit form of the 

dynamical equation valid for a stationary accretion, as considered by Lyubarskij 
et al. [12]. These results are obtained for particular values of the exponent n 
(namely, n = ­ 1 , 0, 1, 2, 3 ) in the accepted power­law relation η = β Σn 

between the viscosity η and the surface density Σ of the eccentric accretion 
disc. Following the notations in [11], this equation can be written as a 
homogeneous second order ordinary differential equation: 

(1) A(e, ė, n) ë + B(e, ė, n) ė = 0 , 
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where A(e, ė, n) and B(e, ė, n) are already known functions of e, ė and n (their 
derivation is the main outcome of [11]) and the dot (.) denotes differentiation 
with respect to u = ln p ; p is the focal parameter of elliptical trajectories of 
the gas particles. In their paper Lyubarskij et al. [12] have numerically solved 
equation (1) for some particular values of n (see Figs. 2-5 from [12]) and have 
obtained three classes of solutions. In order to verify our analytical derivations 
we have also repeated the solution of differential equation (1) using a numerical 
method and have found agreement between our graphics and the graphics in 
[12]. We shall further use the exact results of the numerical integration of 
dynamical equation (1) as standards with respect to which we shall compare 
the validity of our analytical approximations to the solutions of (1). This will 
give us the opportunity to establish the domain where our analytical approach 
is successful and also to estimate the precision of the approximations. We 
shall test the most simple and the most suitable for the analytical applications 
fitting of the eccentricity dependence e = e(u ≡ ln p, n) - the polynomial 
approximation. 

Polynomial Approximation to the Solutions of the 
Dynamical Equation 
We shall try to find a solution to equation (1) using the following power-

law expansion for the unknown eccentricity function e = e(u, n) 

M 

(2) e(u, n) = Σ ai(n) ui, 
i=0 

where the coefficients ai(n) (i = 0,..., M) are unknown functions on the 
parameter n and are subject to further determination. Because our investigation 
of the problem of finding solutions to equation (10) is restricted only to five 
fixed integer values of n (n = - 1 , 0, 1, 2, 3), in what follows we shall omit the 
explicit notation of the dependence on n. The meaning of n will be clear from 
the heading of the considered case. Generally speaking, the power series (2) 
may contain an infinite number of terms (i. e., M = ∞). But in order to obtain 
practically effective and usable computational procedure, we must truncate 
series (2), assuming some finite value M (i. e., M < ∞). In the present work 
we have confined ourselves to the value M = 5. This was done for computational 
reasons. When we attempted to determine higher order coefficients a6, a7 

etc., the analytical expressions for these functions became so long and 
complicated that the available memory of the computer was not 
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enough in order to perform the analytical evaluation of these quantities. Such 
a circumstance must not be considered only as a technical problem, but also 
as an evidence that the analytical approach we have selected is not productive 
in view of high accuracy evaluation of the eccentricity e(u) along the radius of 
the accretion disc. Consequently, the applied method for approximation of 
e(u) by means of a polynomial is working effectively only when the truncation 
M = 5 is appropriate to give the desired precision. We stress that the main aim 
of our investigation is to find analytical expressions for e(u) which are suitable 
for further analytical manipulations and which should not produce too 
complicated mathematical formulae as final results. Unfortunately, if the lower 
order coefficients a2, a3, a4 and a5 are tedious expressions, there is not any 
reasonable hope to expect that the application of the approximation (2) will 
ensure this optimistic outcome. So, we have to confine ourselves to the more 
particular case of simplifying of the task, namely, to use in the intermediate 
analytical calculations the suitable for analytical work polynomial 
representation (2), without introducing in it the explicit form of the coefficients 
ai (i = 0, 1,..., M) and only arriving at the final results to do these replacements. 

In the case n = 1, when dynamical equation (1) has relatively simple 
form (see eq. (14) from [11]) we have made comparison for two different cut-
offs of series (2): for M= 5 and M = 8 (a better degree of approximation). The 
results show that we cannot establish an evident increase of accuracy when M 
= 8 is used instead of M = 5. Transferring this conclusion to the cases n = 0, 1, 
2 and 3 (without an explicit proof!), we are challenged to believe that assuming 
the cut-off M = 5 is a reasonable compromise between the complexity of the 
coefficients a. (i = 0 , 1 , . . . , M) and the accessibility of a higher accuracy of the 
approximation (2) by means of greater values of the cut-off M. Taking in 
advance the results in the next section of this chapter, we give the "size" of the 
coefficients ai (i = 2,. . . , M 5(or M 8) ) as evaluated by the occupied computer 
memory. Of course, this is a very rough measure of the complexity of these 
quantities, but their explicit formulae are too long and complicated to be given 
in this paper. For this reason, we prefer to prepare only a brief sketch of their 
length, which of course does not reveal their internal structure. Such a 
description of the coefficients ai (i = 2,... , M 5 (or M 8).) may seem as a very 
Active picture of their real mathematical properties. Nevertheless, the data 
clearly demonstrate the increasing complication of the computational procedure 
when higher order terms are taken into account into power series (2). 
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It also supports the unavoidable need to cut off this series at M = 5. 
Consequently, the derived domain of validity of approximation (2) can be 
hardly extended (for a value of the accuracy fixed in advance) of the solution 
e = e(u, n)) to a wider region in the parameter space of the initial conditions 
(e0 = e(u0 = In p0, n), ė0 = ė0(u0 = In p0, n)). We stress that we have chosen to 
investigate/derive the solutions to dynamical equation (1) by using polynomial 
approximation (2) for its simplicity in view of its application to analytical 
evaluations (easy differentiation and integration, simple procedures for finding 
roots and singularities, etc.). However, we do not state that there are not more 
complicated exact analytical solutions to the homogeneous second order 
ordinary differential equation (1). Our inability to find such solutions e = e(u 
= ln p, n), though they may be very awkward, does not mean that they cannot 
be found at all ! Of course, we shall confine ourselves not to the maximal 
purpose to obtain these solutions, but to put into use more complicated 
approximate expressions than (2), in order to expand the domain of validity of 
the approach. However, this eventually may not be the successful position. 
Out of the complicated analytical applications, the more exact solutions (in 
the sense of an extended domain of validity) do not ensure in advance a better 
coincidence with the observations. This is because of the inaccuracy of the 
physical description of the reality inherent to the model of Lyubarskij et al. 
[12], as discussed earlier. Therefore, the use of more precise approximations 
than (2) does not guarantee that the higher price to be paid for that is an 
acceptable decision. We only mention in that sense, that we have tried to 
transform the most simple of the considered dynamical equations (namely, 
eq. (14) from [11]; Case n = ­1) substituting e(u, n = -1) = cos[ψ(u, n = ­1)], 
but the introduction of the angular coordinate y/(u, n) did not produce the 
expected result ­ the equation was not reduced to a form supposing an easier 
to find exact solution. 

An important note should be made. The general solution of differen­

tial equation (1) depends on two integration constants which are subject to 
determination from the initial and boundary conditions. The considered prob­

lem deals with a stationary accretion disc, so it is sufficient to give the values 
of two physical characteristics of the disc at a given fixed value of the focal 
parameter p0 (respectively, uQ = ln pQ). The most natural choice seems to se­

lect the eccentricity e and its derivative ė ≡ ∂ e / ∂u ≡ ∂ (ln e)l ∂ p. In terms of 
the polynomial approximation used here, the later variable may be written as 
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M-l 

(3) ė(u, n) = Σ(i + 1) a i + 1 ui ; (n = - 1 , 0, 1, 2, 3). 
i=0 

In what follows in this paper, we choose the value of the focal parameter at 
which we give the boundary conditions, to be equal to 1. Respectively, u0 = 
ln p0 = 0. Because p = b2/a, this means that we set the boundary conditions on 
an ellipse with major and minor semiaxes a and b, respectively, satisfying the 
relation b = a1/2. Then, omitting the notation of n, from (2) and (3) we obtain 
the simple relations e0 ≡ e(u0) = aQ and ė ≡ ė(u0) = a1 In other words, using 
the above gauge, we in fact assign values to the coefficients aQ and a1. 
Consequently, these quantities must be considered as independent input 
parameters of the problem and all other variables are functions of them. In 
particular, the higher order coefficients ai (i = 2,.. . , M 5 (or M 8 ) ) also depend 
on aQ = e0 and a1 = ėQ (and on the exponent n in the viscosity law η = βΣn, of 
course). For each fixed value n = - 1 , 0,..., 3, we have derived ai (i = 2,... , M 5 

(or M 8)) in an explicit form as functions on a 0 and a1. And then the lengths of 
these expressions were approximately evaluated as shown by the data on Table 
1. 

Tablel. Approximate evaluations of the "size " of the coefficients 
ai (eo, ė0, n). 

Powers 

Coefficients 

n = - 1 n = 0 n = + 1 n = +2 n = + 3 

a2 3.22 kb 8.68 kb 14.3 kb 6.13 kb 8.16 kb 
a3 3.83 kb 46.4 kb 111 kb 28.7 kb 40.2 kb 
a4 

6.38 kb 143 kb 369 kb 76.7 kb 127 kb 
a5 

9.04 kb 2.31 Mb 856 kb 168 kb 281 kb 
a6 

12.07 kb 
a7 19.0 kb 

a8 
28.7 kb 

Selecting the polynomial approximation (2) and the boundary 
conditions e0 ≡ e(u0 = 0) and ėQ ≡ ė(uQ = 0), we can also compute easily the 
second derivative of the eccentricity: 
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M-2 

(4) £ (w) = Z (1 + 2 ) 0 + 1 ) ^ , 
i=0 

the difference e(u) - e(u) between the eccentricity e(u) and its derivative 
e(u): 

M-l 

(5) e ( « ) - ^ ( u ) = S [ a j - ( i + l ) f l w ] « i , 
i=0 

the powers of the eccentricity e(u) and e(u): 
M i 

(6) e2(«) = i : ( 2 f l k « , ) U ' , 
i=0 k=0 

M i i-k 

(7) e* (« ) = E ( E f l k E a p f l i f c 1 , ) « i , 
i=0 k=0 p=0 

M i l i-1 

(8) e\u) = S [ S ( 2 a k A J ( S a k fli+k) ] «' , etc. , 
i=0 1=0 k=0 k=0 

M 

(9) e\u) = E [ Z ( k + l)(i - k + 1) ak+] aiW ] W , 
i=0 

M i k 

(10) e\u) = S { I [ S ( l + l)(k - 1 + 1) aM akAH ] (i - k + 1) a , k + l } u\ etc. 
i=0 k=0 1=0 

Obviously, the higher powers of the eccentricity e(u) and its derivative e(u) 
become more and more bulky, but nevertheless they may be computed in an 
explicit manner. We shall not, of course, give them here. But we shall write a 
formula, also used in our computations. According to [20] (see expression 
5.3): 
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(11) ( l - e 2 ) 1 / 2 =Y.d.^ ; d0=l, d, = -V2 ; 
i=0 

4 = - [ ( 2 i - 3 ) ! ! ] / ( 2 i ) ! ! for i = 2, 3, ... ; 
(this means that d2 = - 1/8 , d3 = - 1/16 ,d4 = - 5/128 , etc.). 

The above formula is also applied for expansions in powers of the expressions 
(1 - e2)m and [1 - (e - e)2 ]m, replacing e(u) by e(u) or by [e(u) - e(u)] , 
respectively. Combining the expansions like written above, we have also 
computed the power series expansions of (1 - e2)3'2, (1 - e2)5/2, (1 - eTf12, 
(1 - e2)5'2,...; [1 - (e - e)2 f'2, [1 - (e - e)2 ]5'2,.... As a final result, we have 
obtained the necessary power series expansions of the coefficients A(e, e, n) 
and B (e , e, n) for every fixed value of n = - 1 , 0 , 1,2 and 3. Substituting these 
into dynamical equation (1) and reducing after some algebraic manipulations 
its left-hand side to a series in powers of u, we transform (1) to the following 
form: 

M 

(12) S c i ( e o , e o ) f l 2 ! f l 3 , . . . ) f l M , n ) « i = 0 , (n = - 1,0, 1, 2, 3 ; M = 5 or 8 ) . 
i=0 

This nullification must be fulfilled for arbitrary values of u and, consequently, 
all the coefficients c{(e0, eQ, av ay aM, n) also must be equal to zero: 

(13) Cj(e 0 , e0, a2, a3, ...,aM,n) = 0 , (n = - 1, 0, 1, 2, 3 ; M = 5 or 8). 

It should be mentioned that multiplying different kinds of expressions 
like these given by formulae (2) - (11), we shall obtain terms including powers 
of u greater than M. Such circumstance leads to undesirable complications of 
the intermediate calculations of the left-hand side of (12). For example, we 
may get terms proportional to w15, w16, w17, etc. To avoid this objectionable 
situation, we cut off the powers of u which are much greater than M (M = 5 or 
8). Of course, these manipulations of the intermediate analytical expressions 
must be done carefully in order to avoid in the final sum erroneous truncations 
of terms proportional to u{ (i< M). In that sense, we insured ourselves by 
formally preserving the terms in (12) up to order wM + 3, which do not create too 
much problems with respect to the complexity of the formulae. 
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Deriving explicitly the coefficients c.(eQ, e0, a2, ay aM, n), it turns 
out that for each fixed value of n = - 1 , 0 , 1 , 2 and 3, relations (13) give linear 
equations for a. (i = 2 ,3 , . . . , M = 5 or 8) provided that the low order coefficients 
ai are already known. That is to say, equalities (13) are in fact recurrence 
formulae for a{ (i = 2, 3, . . . , M = 5 or 8). In more details, we have that the free 
term of (11) depends only on e0, eQ, a2 and n, but not on av aA, etc. Equating it 
to zero 
( 1 4 ) c 0(e 0, e 0, a 2 , «) = 0 , 
we obtain a linear equation for the unknown quantity a2 , which is easily 
solved. Further we see that the coefficient cx depends only on e0, eQ, a2, a3 and 
n. Similarly, it turns out that its nullification 
(15) c,(e0, e0, a2, ay n) = 0 
appears as a linear equation for the unknown quantity a3 under the condition 
that the value of a2 is already computed from (14). This sequence of operations 
can be extended, because 
c2 = c2(eQ, e0, a2, ay a4, n) = 0 , c 3 = c 3(e 0, e0, a2, av a4, a5, n) = 0 , etc., and 
these relations are linear equations for a 4, a5, etc. realizing all these steps, we 
obtain finally the polynomial approximation (2) for the eccentricity e(u) of 
the orbits of the accretion disc particles. We again stress that (2) is only a 
fitting to the exact solution of the dynamical equation (1), regardless of whether 
the latter is obtained by numerical or (may be ?) analytical methods. 

It remains to check the precision of our approach, comparing the 
graphics of the solutions of type (2) with the results of the numerical integration 
of (2). It is clearly seen that in the parameter space (e, e) (for every fixed value 
of n) there are regions where the polynomial approximation (2) gives an 
excellent agreement with the exact solutions of equation (1). There the 
difference e(u) , - e(u) . ., may be less than 10"6 or even better!). But 

v ' exact v ' polynomial J ' 

there are also domains where it is fully unacceptable. The transition between 
these two regions is, however, too steep as a rule. Consequently, it is very 
important to determine precisely the boundaries of the validity domain of the 
tested (in this paper) truncated power-low series approximation (2). We remind 
that the eccentricity e(u) and its derivative e(u) must satisfy the following 
restrictions for all u: \e(u)\ < 1, \e(u)\ < 1 and \e{u) - e(u)\ < 1 [11], which in turn 
determine the shape of the overall domain, where we are seeking solutions of 
dynamical equation (1). The above equalities will be discussed in more details 
in a forthcoming paper. We also note that (for our illustrative purposes) we 
have chosen to reject all the polynomial solutions at the level where 
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| e ( w ) e x a c t _ e ( w ) P o i y n o m i a ] 1 0= 1 ' * - e - ' w e a c c e P t m a t satisfactory accuracy is achieved 
when the deviation of the tested analytical approximation (2) from the exact 
(numerically obtained) solution is better than 0.1. It is evident that the domain 
where polynomial approximation (2) turns out well has a complex shape, which 
we shall not try to evaluate analytically. But nevertheless, this domain is large 
enough to say that approach (2) makes sense and the considered problem is 
solved at least particularly. 

Singularities of the Power - Law Expansion Coefficients a. 
Evaluating the applicability of truncated (M = 5 or M = 8) power series 

(2) relative to the possibility to solve the equation governing the stationary 
accretion flow in the model of Lyubarskij et al.[12], we have to study in more 
details the behaviour of coefficients a{ (i = 2, 3 , . . . , M) in the parameter space 
(e, e) for each n = - 1 , 0, 1,2 and 3 in separate. Except for the case n = - 1 , the 
explicit expressions for these quantities (functions on e and e) are so long and 
complicated, as discussed earlier, that we are forced to apply graphical 
argumentation rather than purely analytical one. Our aim is not to investigate 
these coefficients as a whole, but only their denominators. The nullifications 
of the latters dangerous sources, generating divergences of series (2). 
Fortunately, this problem is essentially simplified by the property that the 
denominators of av a4, a5,..., a& are integer powers of the denominator of a2 

within to a non-zero factor. This will be explicitly shown in the following 
example, illustrating the case n = - 1 . Therefore, it is enough to concentrate our 
efforts on finding the roots of the denominator of a2. 

The case n = -1 is the most simple situation. For n = -1 the dynamical 
equation is relatively simole in comparison with the other cases ([11], see eq. 
(14)]: 

(16) denominator a2 = A(n = -1) , 

where A(n = -1) = (1 - e 2)(144 - 80e 2 - \6eA - Se6 - 5 e 8 ) . This expression 
does not depend on e{ii). Provided that \e{u)\ < 1 for all u, the roots of the 
denominator a2 (including their multiplicity) are: 

(17) 
e ] 2 = - e 3 4 = - 1.209 912 ± 1.138 902 / 
e 5 ' 6 = ± 1.097 309 ; e 7 g = ± 1 ; 
e 9 ' 1 0 = - 4.422 x 10- 1 7 ± 1.771 346/ , 

where / is the imaginary unit. Obviously, there are not troubles generated 
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by the nullification of the denominator of ay because all the roots are complex 
or greater than (or equal to) 1 by absolute value. The higher order coefficients 
have denominators as follows: 
(18) denominator a 3 = 96 x [A(n = - l ) ] 2 , 
(19) denominator a4 = 1536 x [A(« = - l ) ] 3 , 
(20) denominator a5 = 30720 x [A(n = - l ] 4 , etc. 
In all the coefficients a{ (i = 2, 3, . . . , 8), the denominators are multiple to the 
powers of A(n = -1) and the other multipliers in each factorization are not 
equal to zero. In the other cases n = 0, 1,2 and 3, the situation is not so 
analytically clear because of the complexity of the coefficients a ; (i = 2, 3, . . . , 
8), but the graphical representations of their denominators indicate that there 
is no evidence of nullification of the latters (at least) for extended domains in 
the plane (e, e). Of course, the domains of validity of polynomial approximation 
(2) must agree with the restrictions \e{u)\ < 1, \e(u)\ < 1 and 
\e{u) - e(u){ < 1 [11], as mentioned earlier. 
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ТЪНКИ ВИСКОЗНИ ЕЛИПТИЧНИ АКРЕЦИОННИ ДИСКОВЕ 
С II. ПОЛИНОМНИ РЕШЕНИЯ НА ДИНАМИЧНОТО 

УРАВНЕНИЕ ЗА ЦЕЛОЧИСЛЕНИ СТОЙНОСТИ 
НА СТЕПЕНИТЕ В ЗАКОНА ЗА ВИСКОЗИТЕТА 

Ц. Димитров 

Резюме 

За целочислени степенни показатели п (n = ­ 1 , 0, 1 , 2 и 3 ) в закона 
за вискозитета η = βΣn, където Σ е повърхностната плътност на 
акреционния диск, ние сме изследвали полиномния подход за намиране 
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решенията на динамичното уравнение в модела на акреционен диск на 
Любарски и др. [12]. Разложенията в степенни редове на ексцентрицитета 
е(и) и неговите производни ė(и) и ë(и), техните степени e2(и), е3(и),...; 
ė2(и), ė3(u) и т.н. са орязани при подходящи стойности на степенните 
показатели и след това те са поставени в динамичното уравнение. 
Извършвайки допълнителни орязвания в промеждутъчните произведения 
и резултати, въпреки това ние сме достигнали точност на решението по­

добра от ~ 10% за една достатъчно голяма област в равнината (е, ė). 
Тези резултати са установени графически чрез сравняване на 

полиномната апроксимация на ексцентрицитета е р о 1 у n o m i a l (u) (където и = 
lп р, р е фокалният параметър на елипсата) и точните стойности еехact(и) 
получени посредством числено решаване на уравнението. Решенията на 
уравнението на движение, което е обикновено диференциално уравнение 
от втори ред, са параметризирани с помощта на граничните условия е0 = 
е(и = 0) и ė0 = ė(и = 0). Коефициентите в разложенията в степенни редове 
са оценени в явен вид, но поради тяхната сложност ние даваме само 
техните "размери", разглеждани като дължини на файловете които ги 
представят. Дискутирани са също проблемите отнасящи се до възможните 
сингулярности на резултатите. 
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